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Focus on the following class of multiscale problems:

1. we are interested only in the macro behavior of the system;

2. a reliable microscopic model is available, but too expensive to
be used directly.



Traditional approach: Sequential multiscale modeling

◮ Write down an empirical macroscale model

◮ Compute coefficients or parameters using microscale model.

Example:

1. hopping rates in kinetic Monte Carlo

2. equation of state in gas dynamics (p = P(ρ,T ))

3. interatomic potentials in molecular dynamics
(V = V (x1, · · · , xN))

OK, but limited to the situation when the unknown components of
the macroscale model depend on few parameters.

Modern approach: Concurrent (“on-the-fly”) coupling



The Car-Parrinello molecular dynamics (1985)

◮ Macro behavior of interest: molecular dynamics of the atoms
(nuclei)

◮ Unknown: Force field (don’t want to use empirical force field
such as Lennard-Jones)

◮ Micro model: Electronic structure models (e.g. density
functional theory)

◮ Key: “On-the-fly” (concurrent) coupling.



The local quasicontinuum method (Tadmor et al. 1996)

◮ Macro behavior of interest: Elastic deformation of crystals

◮ Unknown: Elastic energy functional

◮ Micro model: Atomistic (potential energy in terms of
positions of atoms)

1. Select representative atoms and form finite element mesh

2. Energy of trial function: Average the potential in small
clusters



Kinetic schemes for gas dynamics (Deshpande, 80’s)

◮ Macro behavior of interest: gas dynamics

◮ Unknown: constitutive laws

◮ Micro model: kinetic theory

Macro variables U = (ρ,m,E ) – density of conserved quantities.

1. Reconstruction: From Un, find consistent initial condition for
the kinetic equation.

2. Solve kinetic equation in neighborhood of cell boundaries.

3. Perform the appropriate averages to find the corresponding
fluxes, and use them to find Un+1:

Un+1
j = Un

j −
∆t

∆x
(F n

j+1/2 − F n
j−1/2)
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Superparametrization

Grabowski and Smolarkiewicz (1999), cloud-resolving convective

parametrization

◮ Starting with the usual “Reynolds-averaged” type of
equations.

◮ The “Reynolds stress” terms computed by embedding a 2D
cloud scale model in each column of the large scale model.

◮ “Embarassingly parallel” turbulence models.



Summary

Common features:

1. Capture the macroscale behavior with the help of microscopic
model/simulation.

2. Make use of scale separation.
◮ Solve the microscopic problem in small domains (local QC,

kinetic scheme, superparametrization).



Looking for general strategies

A. Brandt (2000): Multiscale scientific computation: Review 2001

Extension of multi-grid method:

◮ For the purpose of capturing only the large scale behavior
(not resolving all the small scale details), without the need of
an explicit macroscale model.

“At sufficient coarse level, this entire algorithm effectively
produces macroscopic ‘equations’ for the simulated system ....
This can yield a macroscopic numerical description for the
fluid even for those cases where the traditional derivation of
closed-form differential equations is inapplicable.”

◮ Micro model (KMC, MD, etc) used at the finest level of grids.



◮ Linking macro and micro states through “interpolation” and
“projection”.

1. Interpolation: macro to micro
2. Projection: micro to macro

◮ Microscopic model is simulated on subdomains, for a small
number of iterations.

“few sweeps are enough, due to the fast CMC equilibration.
This fast equilibration also implies that the interpolation can
be done just over a restricted subdomain, serving as window:
In the window interior fine-level equilibration is reached.”



Summary of key suggestions:

1. Capturing macro behavior using micro models, with no
explicit macro models

2. Going back and forth between macro and micro states

3. Solve micro problems on “windows” and with “few sweeps”

How do we realize these ideas?
Not clear to me.



Alternative strategies based on the same general philosophy:

◮ Heterogeneous multiscale method (HMM)

◮ “Equation-free”



‘Equation-free (EF)’ (Kevrekidis, Gear, ...)

“Enabling microscopic simulators to perform system-level tasks”.

A collection of techniques that explicitly take into account scale
separation:

1. Coarse bifurcation (a la the RPM of Shroff and Keller)

2. Projective integrators (for time)

3. Gap-tooth schemes (for space)

4. Patch dynamics (for time and space)

Basic building block: Time-stepper

Extended multi-grid “Equation-free”

Interpolation Lifting

Equilibration Evolutions (equilibration)

Restriction (projection) Restriction

Extrapolation



Example: Projective Integrators

ẋ = f ε(x), U = macro variable

◮ Lift: From Un, create initial condition xn,0.

◮ Evolve:
xn,m+1 = xn,m + δtf ε(xn,m)

m = 0, 1, 2, · · · ,M − 2

◮ Restrict: Compute Ũ1 from {xn,M−1} and Ũ2 from {xn,M}

◮ Extrapolate:
Un+1 − Ũ2

∆t
=

Ũ2 − Ũ1

δt

Higher order schemes are obtained using higher order polynomial
extrapolation.



Examples (Gil Ariel, Austin):
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HMM (Heterogeneous multiscale method)

E, Engquist, Vanden-Eijnden ...... (2003)

U F(U, D) = 0
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1. Macroscale solver: Assume a form of macro model, and then
choose a stable numerical scheme for the model.

2. Estimating the missing data: Some data needed in the
macro-solver are missing due to the incomplete knowledge of
the macro model. These data are estimated from the
microscopic model.

Macro-solver – micro-solver – data estimator



−∇ · (aε(x)∇u) = f (x)

◮ Macro model: −∇ · (A(x)∇U) = f (x).
Macro solver: standard finite element with macro mesh size
H, e.g. piecewise linear.

◮ Data to be estimated: stiffness matrix

A = (Aij), Aij =

∫

D

∇Φi(x)T A(x)∇Φj(x)
︸ ︷︷ ︸

fij(x)

dx

Compute Aij by numerical quadrature

Aij =

∫

D

fij(x)dx =
∑

K

|K |
∑

xℓ∈K

wℓfij(xℓ)

xℓ = quadrature points,wℓ = quadrature weights



Illustration of HMM

K

ε≪ δ ≪ H

H = size of triangle, δ = size of box



Approximating fij(xℓ) by solving locally constrained

microscopic problem at xℓ

s

xℓ

Iδ(xℓ)

Constraints:
1

δd

∫

Iδ(xℓ)
∇ϕε

i dx = (∇Φi)(xℓ)

{
−∇ · (aε(x)∇ϕε

i (x)) = 0, Iδ(xℓ)

aε(x)
∂ϕε

i

∂n
= λT · n ∂Iδ(xℓ)

λ = Lagrange multiplier for the constraints

Other boundary conditions:

Periodic: ϕε
i (x)− Φi(x) is periodic with period Iδ(xℓ)

Dirichlet: ϕε
i (x)− Φi(x) = 0 on ∂Iδ(xℓ)



Error Estimates (E, Ming, Zhang, JAMS, 2005)

General abstract error estimate: Under uniform ellipticity condition
and U0 ∈W k+1,∞(Ω):

‖U0 − UHMM‖H1(D) ≤ C
(

Hk + e(HMM)
)

‖U0 − UHMM‖L2(D) ≤ C
(

Hk+1 + e(HMM)
)

‖U0 − UHMM‖W 1,∞(D) ≤ C
(

Hk + e(HMM)
)

| lnH|

U0: Solution for a macroscopic model (e.g. homogenized problem)

e(HMM) = max
K∈TH

max
xℓ∈K

|AH(xℓ)− A(xℓ)|

= error in data estimation

A : effective coefficients in the equation for U0



Case study: homogenization problem

◮ For periodic coefficients:

e(HMM) ≤

{
Cε Iδ = Iε

C
(ε

δ
+ δ

)

otherwise

◮ For random coefficients: κ ≈ 6
25

Ee(HMM) ≤







C
(ε

δ

)κ
d = 3

remains open d = 2

C
(ε

δ

)1/2
d = 1



Example: FMM-HMM (J. Huang, ...):

Evaluate

φ(x) =

∫

Ω

q(y , y
ε )

|x − y |
dy

q is smooth, periodic in the 2nd variable with period I .

◮ Direction application of FMM: Cost = O(ε−3).

◮ HMM strategy:
◮ Macro-solver: FMM
◮ Data needed: Coefficients of multipole expansion:

M
p
k,j =

∫

Ck,j

q(y ,
y

ε
)(y − xk,j)

pdy

where (Ck,j , xk,j) =j-th (box, box-center) at kth-level.

M
p
k,j ≃

∫

Ck,j

∫

I

q(y , z)(y − xk,j )
pdydz

Total cost = O(1).



Simulating gas dynamics using MD

mj
d2xj

dt2
=

∑

k

f jk

Define

ρ̃(y, t) =
∑

j

mjδ(y − yj(t)),

m̃(y, t) =
∑

j

mjbj(t)δ(y − yj(t)),

Ẽ (y, t) =
∑

j

1

2
mj |bj(t)|

2δ(y − yj(t))

+
1

2

∑

j

(
∑

i 6=j

V0(|yj(t)− yi (t)|))δ(y − yj(t)).



∂t ρ̃ +∇y · m̃ = 0,

∂tm̃ +∇y · σ̃ = 0,

∂t Ẽ +∇y · J̃ = 0

Irving-Kirkwood formula:

σ̃ =
∑

i

mivi (t)⊗ vi(t)δ(x − xi(t))

+
1

2

∑

i

∑

j 6=i

(xi (t)− xj(t))⊗ f ij(t)

∫ 1

0
δ (x− (xj(t) + λ(xi (t)− xj(t)))) dλ,

These are MD analog of the equations of gas dynamics.



1. Macro model: conservation law

Ut +∇F = 0

U = mass, momentum, energy density. F is unknown.
Macro-solver: finite volume scheme -central type.

Un+1
j+1/2 =

Un
j + Un

j+1

2
−

∆t

∆x

(
F n

j+1 − F n
j

)
.

xj xj+1

Uj

Uj

Uj+1

F(Uj )

F(Uj )
F(Uj+1 )

Uj+1/2

MD



2. Micro model: constrained MD, U = given (assume that F

depends only on U)

3. Data estimator:
Need an expression for F , or F n

j , from the MD data.
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Stochastic Simulation Algorithm (SSA)

with Disparate Rates

Species: S1,S2, · · · ,SN ; (xi = number of molecules of species Si).
Reaction channels: R1,R2, · · · ,RM

Rj = (aj(x), νj )

aj(x) = rate function of j-th reaction
νj = state change vector

x → x + νj

Multiscale reaction rates:

a(x) = (as(x), af (x))

as(x) = O(1), af (x) = O(1/ε)

R s = (as , νs), R f = (af , νf )



Example:

S1

af
1−→
←−
af
2

S2, S2

as
1−→
←−
as
2

S3, S3

af
3−→
←−
af
4

S4,

af
1 = 105x1, νf

1 = (−1, 1, 0, 0);

af
2 = 105x2, νf

2 = (1,−1, 0, 0);

af
3 = 105x3, νf

3 = (0, 0,−1, 1);

af
4 = 105x4, νf

4 = (0, 0, 1,−1);

as
1 = x2, νs

1 = (0,−1, 1, 0);

as
2 = x3, νs

2 = (0, 1,−1, 0).



Example: Heat shock response of E-Coli

Species Initial value
DNA.σ32 1

mRNA.σ32 17
σ32 15

RNAPσ32 76
DNA.DnaJ 1
DNA.FtsH 0
DNA.GroEL 1

DnaJ 4640
FtsH 200
GroEL 4314

DnaJ.UnfoldedProtein 5× 106

Protein 5× 106

σ32.DnaJ 2959
UnfoldedProtein 2× 105

Table: List of species and their initial value (in number of molecules)

Scrivastava et al. J. Theor. Biol. (2002)



Reaction Rate constant Rates magnitude

Protein → UnfoldedProtein (⋆) 0.2 106

DnaJ+ UnfoldedProtein → DnaJ.UnfoldedProtein (⋆) 0.108 107

DnaJ.UnfoldedProtein → DnaJ+ UnfoldedProtein (⋆) 0.2 106

mRNA.σ32
→ σ32 + mRNA.σ32 0.07 1.19

σ32 → RNAPσ32 0.7 10.5

RNAPσ32
→ σ32 0.13 9.88

σ32 + DnaJ → σ32.DnaJ (⋆⋆) 3.62 × 10−3 25.2

σ32.DnaJ→ σ32 + DnaJ 4.4 × 10−4 1.30

DNA.DnaJ + RNAPσ32
→ DnaJ + DNA.DnaJ + σ32 8 3.71

σ32.DnaJ + FtsH → DnaJ + FtsH 1.42 × 10−5 8.4

DNA.GroEL + RNAPσ32
→ GroEL + DNA.GroEL +σ32 0.063 4.78

DNA.σ32
→ mRNA.σ32 1.4 × 10−3 1.4 × 10−3

DnaJ → degradation (⋆⋆) 6.4 × 10−10 2.97 × 10−6

FtsH → degradation 7.4 × 10−11 1.48 × 10−8

GroEL → degradation 1.8 × 10−8 7.76 × 10−5

mRNA.σ32 → degradation 1.4 × 10−6 2.38 × 10−5

DNA.FtsH + RNAP.σ32
→ FtsH + DNA.FtsH + σ32 4.88 × 10−2 0

Table: Reaction list for the heat shock response model of E. Coli. The
rate constant is the number ci in ai(x) = cixj for the reactions involving
one species, or in ai(x) = cixjxk for the reactions involving two species.



Standard stochastic simulation algorithm (SSA)

Gillespie (1976), Bortz, Kalos and Lebowitz (1975)

a0(x) =
∑

aj(x)

1. r1, r2 = indep random variables with uniform distribution on
[0, 1]

δtn+1 = −
ln r1

a0(x)

Define kn+1 by:

1

a0(x)

kn+1−1
∑

j=1

aj(x) < r2 ≤
1

a0(x)

kn+1∑

j=1

aj(x).

2. Update the time and the state of the system

tn+1 = tn + δtn+1 , xn+1 = xn + νkn+1
.



How do we deal with the multiscale rates

Previous work:
Scrivastava et al. (2001)
Haseltine and Rawlings (2002)
Takahashi et al. (2004)
Cao, Gillespie, Petzold (2005)

Issues remain to be addressed:

1. What is the effective process on slow time scale? What are the
slow variables?
2. Develop multiscale algorithm without making closure
assumptions on rate functions, e.g. 〈xjxk〉 = 〈xj〉〈xk〉+ · · · .



Nested SSA (E, Liu, Vanden-Eijnden, 2005)

1. Inner SSA (micro solver):
Run N replicas of SSA with fast reactions only, for time Tf .
Compute averaged slow rates:

ãs
j =

1

N

N∑

k=1

1

Tf

∫ Tf

0
as
j (xk(τ))dτ,

2. Outer SSA (macro solver):
Run one step of SSA with the modified slow rates R̃ s = (ãs , νs).

Related work by D. Vlachos et. al (2005)



Features, Issues and Extensions

Features:

1. Simple: Involves a very simple change to the original SSA.

2. General: No ad hoc approximation of rate functions

3. Seamless: No need to think about fast/slow variables

Extensions: More than two scales



Hierachical view of SSA

Reaction Rate constant Rates magnitude

Protein → UnfoldedProtein (⋆) 0.2 106

DnaJ+ UnfoldedProtein → DnaJ.UnfoldedProtein (⋆) 0.108 107

DnaJ.UnfoldedProtein → DnaJ+ UnfoldedProtein (⋆) 0.2 106

mRNA.σ32
→ σ32 + mRNA.σ32 0.07 1.19

σ32 → RNAPσ32 0.7 10.5

RNAPσ32
→ σ32 0.13 9.88

σ32 + DnaJ → σ32.DnaJ (⋆⋆) 3.62 × 10−3 25.2

σ32.DnaJ→ σ32 + DnaJ 4.4 × 10−4 1.30

DNA.DnaJ + RNAPσ32
→ DnaJ + DNA.DnaJ + σ32 8 3.71

σ32.DnaJ + FtsH → DnaJ + FtsH 1.42 × 10−5 8.4

DNA.GroEL + RNAPσ32
→ GroEL + DNA.GroEL +σ32 0.063 4.78

DNA.σ32
→ mRNA.σ32 1.4 × 10−3 1.4 × 10−3

DnaJ → degradation (⋆⋆) 6.4 × 10−10 2.97 × 10−6

FtsH → degradation 7.4 × 10−11 1.48 × 10−8

GroEL → degradation 1.8 × 10−8 7.76 × 10−5

mRNA.σ32 → degradation 1.4 × 10−6 2.38 × 10−5

DNA.FtsH + RNAP.σ32
→ FtsH + DNA.FtsH + σ32 4.88 × 10−2 0
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Slow variables and slow process

Slow variables do not change during fast reactions

v(x + νf ) = v(x)

If v(x) = b · x , then
b · νf = 0

Slow variables:

yj = bj · x

where (b1, b2, · · · bJ) = basis for span{νf }⊥.



Quasi-equilibrium: equilibrium states for the “virtual fast
process”, for fixed y , denote by µy (x).

Effective slow process:

āj(y) = 〈aj(x)〉y =
∑

aj(x)µy (x)

Theorem: Assume f is a smooth function, then

|Ef (y ε
j (t))− Ef (yj(t))| ≤ Cε

for t ∈ [0,T ], where y ε
j = bj · x

ε.



Error estimates

E|āj − ãs
j | ≤ C

( 1

1 + Tf /ε
+

1
√

N(1 + Tf /ε)

)

Optimal choice of N,Tf , given the error tolerance is λ

N =
Tf

ε
=

1

λ

Cost (per unit time)

= ãs
0NTf a

f
0 = O(

1

λ2
)



Results: heat shock response model

T = 10

Direct SSA (N0 = 1000)

σ32 = 14.8 ± 0.1, var(σ32) = 14.2 ± 0.1.
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Why start with the macro solver?

◮ need preconceived notion about how the macro model is like.

◮ unpopular at the time to do top-down.

Basic difficulty with bottom-up: Macroscopic character is
important for designing stable and accurate algorithms.

Comment on coarse-grained Hamiltonian.

In practice, we often already know a lot about the macroscale
behavior of the system. We should use that knowledge.



What if we make a wrong assumption about the

macroscale model?

HMM is an “optimal approximation” strategy: It gives the optimal
approximation within the class of models that it considers.

“Optimal approximation” based on what is known about the
problem.



Common difficulty

All three methods, extended MG, HMM and ‘equation-free’ require
going explicitly from macro to micro states, i.e. reconstruct initial
conditions for the micro solver.
This can be complicated, e.g. when we reconstruct atomic
positions from continuum fields.

Macro to micro micro to Macro

Extended multi-grid interpolation restriction (projection)

HMM reconstruction compression

Equation-free lifting restriction

Can we avoid doing this? Yes, in the HMM framework.



A simple trick: Modifying the parameters:

ẋ = 1 + y , x(0) = 0,

ẏ = −
1

ε
z , y(0) = 0,

ż =
1

ε
y z(0) = 1,

◮ Change ε to a larger value ε′.

◮ Solve using standard methods.

◮ Used in Car-Parrinello molecular dynamics
(Note: CPMD does not fit in the current HMM framework).

◮ Used in artificial compressibility method for incompressible
flows (Chorin and Temam).



Rescale micro time:

Seamless HMM:

Figure: Illustration of HMM (upper panel) and the seamless algorithm
(lower panel). Middle panel: rescaling the micro time scale.



A new seamless formulation (E, Ren and Vanden-Eijnden)

◮ Run micro-solver using its own time step δt

◮ Run macro-solver at a slower pace (time step = ∆t/M) than
what is necessary for accuracy. M > τε

δt = relaxation steps
needed for micro-solver

◮ Couple macro and micro every step

macro (t)

rate of

strain
stress

micro (τ )

τ = λt

No need to reinitialize the micro-solver!



General formulation

Given {Un, un}, find {Un+1, un+1} through:

◮ Macro-solver:
Un+1 = S∆t

M
(Un;Dn)

where Dn stands for the needed data (such as stress). It may
depend on the past (sliding averaging might be used).

◮ Micro-solver:
un+1 = Sδt(u

n;Un+1)

where Un+1 enters as constraints, such as boundary
conditions.

M (which may depend on n) is the number of micro steps needed
for relaxational process, i.e. Mδt >> τε (relaxation time scale).

This is seamless, very simple, and generalizable.



Examples of applications

◮ Complex fluids (Ren)

◮ Free energy calculations (Vanden-Eijnden et al.)

◮ Seamless string method (Vanden-Eijnden et al.)

◮ General homogenization problems (Assyr Abdulle’s code)

◮ Stochastic simulation algorithms

◮ .......



Example: Fluids

Assume that the macro model is of the form:

ρ0(∂tU + (U · ∇)U) +∇P = ∇ · τ

∇ · U = 0

τ = τ(∇U)

◮ Macro-solver: Projection method.

◮ Data to be estimated: τ = τ(∇U).

◮ Micro-model: Molecular dynamics, bead-spring models for
polymer chains.

The assumed functional dependence of τ is important and is used
as constraints in MD.



Macro-solver: Projection method (Chorin)

ρ0
U∗ − Un

∆t
= ∇ · τn

ρ0
Un+1 − U∗

∆t
+∇Pn+1 = 0

△Pn+1 =
ρ0

∆t
∇ · U∗



Computing stress from MD

Step 1. Constant rate-of-strain MD

See Weiqing Ren’s work.
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Figure: New: Flow lines of a Lennard-Jones fluid in the driven cavity flow
at different times: t = 7.5× 103, 1.0× 104, 1.25× 104, 2.25× 104 from
top to bottom. The left column is the result of the seamless multiscale
method, and the right column is the numerical solution of the
Navier-Stokes equation.
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Figure: New: Flow lines of a polymer fluid in the driven cavity flow at
different times: t = 7.5× 103, 1.0× 104, 1.25× 104, 2.0× 104 from top
to bottom. The left column is the result of the seamless multiscale
method with the macro time step ∆′t = 0.5; the right column is the
result of the multiscale method with a smaller macro time step
∆′t = 0.25;



Why hasn’t multiscale modeling been more successful?

◮ There are serious problems with the microscale models (e.g.
SSA).

◮ Design constrained micro solver.

◮ The signal to noise ratio problem.

◮ Dealing with continuum of scales.

Another class of problems:
“Heterogeneous domain decomposition”.

◮ Coupling quantum mechanics and classical mechanics
(QM-MM, Warshel and Levitt, 1975).

◮ Coupling molecular dynamics and continuum mechanics.

◮ Coupling kinetic equation with fluid dynamics equations.

How can we do better?



Is HMM worthwhile?

Given that:

◮ similar ideas have been used in various applications before

◮ it is more of a philosophy, rather than a concrete algorithm

◮ we still have to make assumptions about how the macroscale
model looks like (which was a rather unpopular strategy
during the early days of multiscale modeling)

◮ ......

is HMM worthwhile? Yes, since

◮ It is a very nice way or organize our ideas about multiscale
algorithms.

◮ It allows us to make best use of what we know about the
problem at the different scales.

◮ It is the only existing general framework that allows us to
perform error analysis.

Analogy: The finite element method.
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